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Abstract. We consider free surface flow in random porous media by treating hydraulic conduc-
tivity of a medium as a random field with known statistics. We start by recasting the boundary-value
problem in the form of an integral equation where the parameters and domain of integration are ran-
dom. Our analysis of this equation consists of expanding the random integrals in Taylor’s series
about the mean position of the free boundary and taking the ensemble mean. To quantify the
uncertainty associated with such predictions, we also develop a set of integro-differential equations
satisfied by the corresponding second ensemble moments. The resulting moment equations require
closure approximations to be workable. We derive such closures by means of perturbation expansions
in powers of the variance of the logarithm of hydraulic conductivity. Though this formally limits our
solutions to mildly heterogeneous porous media, our analytical solutions for one-dimensional flows
demonstrate that such perturbation expansions may remain robust for relatively large values of the
variance of the logarithm of hydraulic conductivity.
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1. Introduction. Moving boundary problems arise in applications ranging from
the highly utilitarian, such as the wetting and drying of porous media [25], response
of water tables to groundwater pumping [8], oil recovery [2], heat conduction [9],
diffusion-limited aggregation [21], crystal growth and semiconductor fabrication [10],
to the felicitous, such as snowflake formation [15]. For purposes of analysis, the
system parameters in these problems are usually assumed to be well defined and
known with certainty. In most applications, however, system parameters cannot be
known precisely in all of their relevant details. This leads to uncertainty in the
prediction of front dynamics and a resulting need to quantify that uncertainty. We
describe methods for estimating front statistics, such as a front’s mean dynamics and
variance, directly from moment integro-differential equations. This approach avoids
the need for large numbers of Monte Carlo simulations and allows the use of relatively
coarse computational grids in numerical solutions.

We will discuss uncertain front dynamics in the context of flow in geological porous
media to be concrete. Predicting flow through natural porous media is complicated
by their high degree of spatial variability and the lack of detailed characterization of
their hydraulic properties. In practice, parameters like hydraulic conductivity, K(x),
can at best be measured at selected locations and depth intervals where their values
depend on the scale (support volume) and mode (instrumentation and procedure)
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of measurement. Estimating the parameters at points where measurements are not
available entails a random error.

Consider the motion of a fluid-fluid interface in a randomly heterogeneous porous
medium ΩT (bounded by the surface ΓT ) when gravity, capillary length, and the
viscosity of one fluid are zero. In the inviscid fluid (air), the pressure is constant
and may be set to zero. The viscous, incompressible fluid (water), occupies the flow
domain Ω (Ω ⊂ ΩT ) which is bounded either entirely by a free surface γ or by a
combination of γ and some segments of ΓT . Such flow is described by a combination
of Darcy’s law and mass conservation,

q(x, t) = −K(x)∇h(x, t), −∇ · q(x, t) + f(x, t) = 0, x ∈ Ω(t),(1)

subject to boundary conditions

h(x, t) = H(x, t), x ∈ ΓD,(2a)

n(x) · q(x, t) = Q(x, t), x ∈ ΓN ,(2b)

h(x, t) = 0, n(x, t) · q(x, t) = Vn(x, t), x ∈ γ(t).(2c)

The flux, q [LT−1], flows down gradients of hydraulic head, h [L], subject to con-
straints imposed by the hydraulic conductivity, K [LT−1]. In principle K is a second-
order tensor, but here we assume that it is a scalar function, K = K(x), for simplicity.
The randomness of the porous medium is captured by representing K as a spatially
random field with mean, K, variance, σ2

K , and a correlation function, ρK(x,y). Other
sources of randomness are the source function, f(x, t) [T−1], and the boundary con-
ditions. The boundary Γ = ΓD ∪ΓN ∪γ consists of Dirichlet segments, ΓD, Neumann
segments, ΓN , and a moving front, γ, that is itself a dependent random process. The
prescribed hydraulic head, H(x, t) [L], on ΓD and the prescribed flux, Q(x, t) [LT−1],
on ΓN are both random functions. We assume the driving forces f , H, and Q to be
statistically independent for simplicity. At the free surface γ, h equals atmospheric
pressure which we set equal to zero without loss of generality; Vn(x, t) [LT

−1] is the
velocity of the moving boundary γ in the normal direction. Mass conservation requires
that

Vn = ne
dγ

dt
,(3)

where ne is the medium porosity. In what follows, we assume that the statistics of the
random fields K(x), f(x, t), H(x, t), and Q(x, t) can be obtained from experimental
data sets. We do not require these fields to be statistically homogeneous. Our aim is
to derive a set of equations satisfied by the unbiased predictors h(x, t), q(x, t), and
V n(x, t) and to estimate errors associated with these predictors.

Such a description of moving fronts implicitly ignores the presence of a transitional
zone wherein the fluid saturation varies gradually from 0 to 1. This sharp interface
approximation is known as the Green and Ampt model [13] and is widely used in
subsurface hydrology (see, e.g., [12, 3, 8] and the references therein). Also, this is
the model used in the seminal front stability analyses by Chuoke, van Meurs, and
van der Poel [5] and Saffman and Taylor [25]. The absence of gravity corresponds to
a horizontal displacement. Such a flow scenario was used by, among others, Green
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and Ampt [13], Raats [23], and Philip [22] to study wetting fronts in deterministic
porous media. Descriptions of diffusive front dynamics can be found in Yortsos and
Hickernell [32] and Fennemore and Xin [11].

Despite notable progress in analyzing groundwater flows in randomly heteroge-
neous domains with fixed boundaries, there are virtually no studies of flow with free
surfaces. Stochastic averaging of flow equations has typically dealt either with flows in
infinite domains (e.g., [4, 7, 14, 27, 31]) or with flows in domains bounded by Dirichlet
or Neumann boundaries (e.g., [7, 20, 28]). Additionally, deriving effective hydraulic
parameters for such flows has attracted considerable attention (e.g., [16, 18, 19, 29]).

While of considerable interest for many practical applications (such as wetting
of heterogeneous porous media, or response of unconfined heterogeneous aquifers to
pumping), free surface problems in random media have resisted general attempts to
solve them. Dagan and Zeitoun [8] have analyzed the response of water tables (free
surfaces that bound unconfined aquifers from above) to pumping by employing a
restrictive Dupuit assumption and reducing heterogeneity to a perfect layering. A
numerical study of water tables in a heterogeneous dam has been reported in [12].
Modeling wetting in heterogeneous porous media is further complicated by instabil-
ity of the wetting fronts (free surfaces). Wetting front instability and development of
fingers have been observed by, among others, Baker and Hillel [1] during their infiltra-
tion experiments in layered soils. Numerical simulations of wetting front instabilities
due to pore-scale heterogeneities have been carried out by Lenormand, Touboul, and
Zarcone [17]. A probabilistic criterion for the onset of wetting front instability in
randomly stratified porous media has been derived by Chen and Neuman [3].

The first part of this paper is devoted to deriving a boundary-value problem which
describes mean dynamics of free surfaces in random conductivity fields with known
statistics. We do not require this field to be homogeneous. We also derive a set of equa-
tions for the second ensemble moments to assess the error associated with averaging.
A closure for our ensemble moment equations is provided by means of a perturbation
analysis. The second part of this paper is devoted to obtaining analytical solutions
of the general moment equations for one-dimensional (1-D) front propagation.

2. Statement of the problem. Obviously, the boundary-value problem (1)–
(2) is highly nonlinear due to the presence of the moving boundary, γ. Moreover, since
the dynamics of γ depend on the random parameter K, its exact position at any given
time is uncertain. Hence its normal vector n is also random. This complicates direct
stochastic averaging of (1)–(2). To address this problem, we represent the random
field K (and other random fields) through a Reynolds decomposition as a sum of its
mean K and a zero-mean perturbation K ′, K = K + K ′ (K ′ ≡ 0). This recasts
(1)–(2) in the form of an integral equation,

−
∫

Ω

∇y · [K(y)∇y G(y,x)
]
h(y) dy =

∫
Ω

∇y · [K ′(y)∇y h(y)] G(y,x) dy

+

∫
Γ

K(y)n · [G(y,x)∇yh(y) − h(y)∇yG(y,x)] dy +

∫
Ω

f(y)G(y,x) dy,(4)

where G(y,x) is a deterministic Green’s function satisfying

∇y · [K(y)∇yG(y,x)
]
+ δ(y − x) = 0, y, x ∈ ΩT ,(5)

subject to the boundary conditions

G(y,x) = 0, y ∈ ΓD,(6a)
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n(y) · ∇yG(y,x) = 0, y ∈ ΓN .(6b)

Note that our Green’s function G(y,x) is defined for the entire domain ΩT rather than
just for the flow domain Ω, so that there are no conditions on G along the moving
boundary γ. Specifying G for just the flow domain, Ω, would require recalculating G
at each time as Ω evolves, which is not computationally efficient.

Applying Green’s formula to the first domain integral in (4), while taking into
account boundary conditions (2a)–(2c), yields

h(x, t) =−
∫

Ω

K ′(y)∇yh(y, t) · ∇yG(y,x)dy +

∫
Ω

f(y, t)G(y,x)dy

−
∫

ΓN

Q(y, t)G(y,x)dy −
∫

ΓD

H(y, t)K(y)n · ∇yG(y,x)dy

−
∫
γ

Vn(y, t)G(y,x)dy.(7)

This integral equation serves as the starting point for our stochastic analysis. The
first two and last terms in this equation involve integration of random functions over
the random domain, Ω, and surface, γ, respectively. Since the source function, f(x, t),
is defined on a compact support situated well within flow domain Ω, we have at all
times ∫

Ω

f(y)dy ≡
∫

Ω

f(y)dy.(8)

In the remaining two integrals, we represent the random geometry as sums of ensemble
means and zero-mean fluctuations, Ω = Ω+Ω′ and γ = γ+γ′, and expand the integrals
in question in Taylor series around the mean geometry Ω and γ. For example, the
integral over γ now becomes∫

γ

Vn(y)G(y,x)dy =

∫
γ

Vn(y)G(y,x)dy + γ′Vn(γ)G(γ,x) + · · · .(9)

The linearized solution can be obtained by retaining only the leading term in (9)
and the corresponding expansion of the first integral in (7). We demonstrate in the
following sections that the linearized solution can cause systematic errors in predicting
mean position of the front and its variances. At the same time, a similar linearization
of the nonlinear flow equation for partially saturated porous media was shown to give
satisfactory results [33]. We therefore proceed by deriving linearized solutions for the
first two ensemble moments of the front (its mean and variance). Then we examine
the errors introduced by such a linearization.

3. Linearized moments equations. Taking the ensemble mean of the lin-
earized version of (7) gives

h(x, t) =

∫
Ω

r(y, t) · ∇yG(y,x) dy +

∫
Ω

f(y, t)G(y,x) dy

−
∫

ΓN

Q(y, t)G(y,x) dy −
∫

ΓD

H(y, t)K(y)n · ∇yG(y,x) dy

−
∫
γ

V n(y, t)G(y,x) dy,(10)



FREE SURFACES IN RANDOM MEDIA 1861

where f(x, t), H(x, t), and Q(x, t) are prescribed ensemble means of the random forc-
ing (source and boundary) functions f(x, t), H(x, t), and Q(x, t), respectively; and
r(x, t) = −K ′(x)∇h′(x, t) is the mean “residual” flux. For flow through domains
bounded by Dirichlet and Neumann boundaries only, implicit equations for the resid-
ual flux were derived in [20, 28]. These authors relied on random Green’s functions,
which, of course, are harder to evaluate than our deterministic G.

For statistically independent forcing functions, operating on the linearized version
of (7) with the stochastic differential operator K ′(x)∇x gives the residual flux r(x, t),

r(x, t) =

∫
Ω

CK(x,y)∇x∇T
yG(y,x)∇yh(y, t) dy

+

∫
Ω

∇x∇T
yG(y,x)K ′(x)K ′(y)∇yh′(y, t) dy

+

∫
γ

CKV (x;y, t)∇xG(y,x) dy .(11)

Here CK(x,y) = K ′(x)K ′(y) is the covariance of K. The linearized integral equa-
tion for cross-covariance CKV (x;y, t) = K ′(x)V ′

n(y) is obtained by evaluating the
linearized version of (7) on the front, linearizing the resulting expression around γ,
multiplying by K ′(x), and taking the mean,

∫
γ

CKV (x;y, t)G(y, γ) dy =−
∫

Ω

CK(x,y)∇yG(y, γ) · ∇yh(y, t) dy

−
∫

Ω

∇yG(y, γ) ·K ′(x)K ′(y)∇yh′(y, t) dy .(12)

To evaluate (11) and (12) one needs a closure approximation for dealing with the
third mixed moments. We derive such a closure below by means of a perturbation
analysis in a small parameter σ2

Y , the variance of log hydraulic conductivity Y = lnK.

Before proceeding any further we notice that (11) reveals that the residual flux
r(x, t) is nonlocal (i.e., depends on more than one point in space). Therefore the mean
flux q(x, t) is likewise nonlocal (depends on averaged head gradients at points other
than x), and thus an effective hydraulic conductivity tensor Keff does not generally
exist. This finding is in line with previous investigations of flow in bounded and
unbounded randomly heterogeneous domains [6, 7, 14, 20, 28].

3.1. Closure by perturbation expansion. In (10), expanding K(x), h(x, t),
q(x, t), Vn(x, t), and G(y,x) in powers of Y ′(x) and collecting terms of the same
powers of σ2

Y yields ith-order sequential approximations of the mean head (here we
consider only the first two terms in this expansion, i = 0, 1),

h
(0)

(x, t) =

∫
Ω

f(y, t)G(0)(y,x) dy −
∫

ΓN

Q(y, t)G(0)(y,x) dy

−
∫

ΓD

H(y, t)Kg(y)n · ∇yG
(0)(y,x) dy −

∫
γ(0)

V
(0)

n (y, t)G(0)(y,x) dy(13a)
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and

h
(1)

(x, t) =

∫
Ω

(0)
r(1)(y, t) · ∇yG

(0)(y,x)dy +

∫
Ω

f(y, t)G(1)(y,x)dy

−
∫

ΓN

Q(y, t)G(1)(y,x)dy

−
1∑

j=0

∫
ΓD

H(y, t)Kg(y)

[
σ2
Y (y)

2

]j
n · ∇yG

(1−j)(y,x)dy

−
1∑

j=0

∫
γ(j)

V
(j)

n (y, t)G(i−j)(y,x)dy,(13b)

where Kg = exp
(
Y
)
is the geometric mean of K, and the first-order approximations

of r(x, t) and CKV (x;y, t) are given by

r(1)(x, t) = Kg(x)

∫
Ω

(0)
Kg(y)CY (x,y)∇x∇T

yG
(0)(y,x)∇y h

(0)
(y, t) dy

+

∫
γ(0)

C
(1)
KV (x;y, t)∇xG

(0)(y,x)dy(14)

and ∫
γ(0)

C
(1)
KV (x;y, t)G

(0)(y, γ(0))dy

= −Kg(x)

∫
Ω

(0)
Kg(y)CY (x,y)∇yG

(0)(y, γ(0)) · ∇yh
(0)

(y, t)dy,(15)

respectively, CY (x,y) = Y ′(x)Y ′(y) being the covariance of Y . The zeroth- and

first-order approximations of the mean front velocity V
(i)

n (i = 1, 2) is obtained by
evaluating (13a) and (13b) at x ∈ γ and linearizing the resulting expressions around

γ. Once the linearized approximations V
(i)

n are found, the mean position of the front
follows from (3),

ne
dγ(i)

dt
= V

(i)

n , i = 1, 2.(16)

For weakly homogeneous random fields K, evaluation of G(i)(y,x) up to any
order is trivial once the zeroth-order approximation, G(0)(y,x), is found. Indeed, for
K(x) = const it is enough to solve (5)–(6b) for g(y,x) = KG(y,x). When K is

log-normal, K = Kg exp(σ
2
Y /2) and G

(j)
K ≡ KgG

(j) = (−1)j/j!(σ2
Y /2)

jg(y,x) for all
j ≥ 0.

The zeroth-order approximation of the mean hydraulic head, h
(0)

(x, t), satisfies a
standard boundary-value problem with moving boundaries for a medium with known
properties, driven by mean source and boundary functions. Nonlocality of the aver-
aged boundary-value problem manifests itself solely in first-order (and higher) terms.

The above systems of deterministic moment equations involve relatively smooth
parameters and dependent variables. As such, these moment equations can be solved
either analytically, as we do below, or, more generally, by standard numerical meth-
ods, such as those proposed in [15, 26]. These authors used the Laplace equation
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with free boundaries to describe snowflake growth and diffusion-limited aggregation,
respectively.

The error introduced by stochastic averaging of (7) can be estimated through the
variance of hydraulic head σ2

h(x, t) = h′(x, t)h′(x, t). For simplicity, we do so for the
case where all forcing terms, f , H, and Q, are deterministic. This limitation can be
easily overcome [30]. The first-order linearized approximation of the hydraulic head
covariance, Ch(x, t;y, t) = h′(x, t)h′(y, t), is obtained by multiplying the linearized
version of (7) with h′(x, t), taking the ensemble mean, and retaining the terms of
σ2
Y -order,

C
(1)
h (x, t;y, t) =−

∫
Ω

(0)
C

(1)
Kh(z;y, t)∇zh

(0)
(z, t) · ∇zG

(0)(z,x)dz

−
∫
γ(0)

C
(1)
hV (y, t; z, t)G

(0)(z,x)dz,(17)

where the first-order linearized approximations of cross-covariances CKh(x;y, t) =
K ′(x)h′(y, t) and ChV (x, t;y, t) = h′(x, t)V ′

n(y, t) are

C
(1)
Kh(x;y, t) = −Kg(x)

∫
Ω

(0)
Kg(z)CY (x, z)∇h

(0)
(z, t) · ∇zG

(0)(z,y)dz

−
∫
γ(0)

C
(1)
KV (x; z, t)G

(0)(z,y)dz(18)

and

C
(1)
hV (x, t;y, t) =−

∫
Ω

(0)
C

(1)
KV (z;y, t)∇zh

(0)
(z, t) · ∇zG

(0)(z,x) dz

−
∫
γ(0)

C
(1)
V (y, z, t)G(0)(z,x)dz.(19)

The front velocity covariance, CV , is obtained from (19) by setting x ∈ γ, noting
that the first boundary condition in (2c) implies that ChV (γ,y) ≡ 0, and linearizing
around γ. A similar procedure applied to the linearized version of (7) leads to the
integral equation for the first-order approximation of the front variance, σ2

γ ,

ne

2

∫
γ(0)

d
[
σ2
γ

](1)
dt

G(0)(y, γ(0))dy

= −
∫

Ω
(0)

C
(1)
Kγ(z;y, t)∇zh

(0)
(z, t) · ∇zG

(0)(z, γ(0))dz.(20)

It follows from (3) that cross-covariances CKγ and CKV are related by

CKV = ne
dCKγ

dt
.(21)

Once the first-order approximation of the head covariance Ch in (17) is found, one
can evaluate the first-order approximation of the head variance σ2

h(x, t) by taking the
limit y → x.

At this stage, it becomes obvious that the linearization of (7) introduces errors
into the first-order expressions (13b)–(15). This is so, since both the second term in
the Taylor expansion of the first integral in (7) and the second and third terms in
the Taylor expansion of the last integral in (7) contribute to the proper first-order

approximations h
(1)

, r(1), and C
(1)
KV . These errors are investigated in detail in the

next section.
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4. Dynamics of 1-D fronts. The remainder of this paper is devoted to the de-
velopment and exploration of approximate solutions for the averaged boundary-value
problem with free surfaces in one dimension. In particular, we employ perturbation
analysis to obtain an analytical solution for 1-D front propagation in a porous medium
column of length L. To emphasize the 1-D nature of the problem we use xf to denote
the front, instead of γ, which was employed in our general analysis. We consider two
scenarios: (i) constant deterministically prescribed flux Q at the boundary x = 0, and
(ii) constant deterministically prescribed hydraulic head H at the same boundary. In
both cases, zero hydraulic head is maintained at the boundary x = L. Extensions to
random Q and H are straightforward. It is assumed that log-hydraulic conductivity
Y (x) of the porous medium is a statistically homogeneous (stationary) multivariate
Gaussian and random field with constant mean Y and an exponential covariance
function

CY (| x− y |) = σ2
Y exp

(
−| x− y |

lY

)
,(22)

where lY is the spatial autocorrelation scale of Y .

For the domain under consideration, the deterministic auxiliary functionG
(0)
K (x, y)

= KgG
(0)(x, y) satisfies, on the open interval (0, L), the equation

d2 G
(0)
K (x, y)

d x2
+ δ(x− y) = 0, x , y ∈ (0, L),(23)

and is given by [24]

G
(0)
K (x, y) = − (x− y)H(x− y) + α(y)x + β(y).(24)

Here H(a) = 1 when a ≥ 0 (and = 0 otherwise) is the Heaviside function, and α(y)
and β(y) are arbitrary functions to be determined from the corresponding boundary
conditions. Also,

G
(1)
K (x, y) = − σ2

Y

2
G

(0)
K (x, y).(25)

4.1. Flux-driven front propagation. Consider a front driven by a constant
flux Q at the boundary x = 0, i.e., Kdh(0)/dx = −Q. We also set h(L) = 0. Then

G
(0)
K (x, y) = − (x− y)H(x− y) + L − y,(26)

and evaluating the 1-D version of (13b) with i = 0 at the front, x = xf , leads to

V
(0)

= Q.(27)

Substituting (26) into the 1-D version of (14) and (15) yields, after some algebraic
manipulations,

r(1)(x) ≡ −Qσ2
Y .(28)

It then follows from the 1-D version of (13b) with i = 1 that V
(1)

n ≡ 0. By the same
token, substituting (26) into the 1-D versions of (18) with x = xf and (19)–(20) leads

to C
(1)
KV (x, xf ) = C

(1)
hV (x, xf ) = σ2

V (xf ) ≡ 0. These results can be obtained directly
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from mass conservation arguments. Indeed, prescribing constant flux Q at the bound-
ary requires that, with probability 1, the front propagates with the same deterministic
velocity V = V = Q. While trivial by itself, this correspondence indicates that our
averaged boundary-value problem is free of internal contradictions. Since determin-
istic V implies deterministic dynamics of the moving front xf = xf , the linearization
of the governing equation about xf does not introduce any additional errors.
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Fig. 1. Normalized head variance versus normalized coordinate for different numbers of corre-
lation scales passed by the front.

While the front moves through a random porous medium with deterministic ve-
locity, the hydraulic head associated with this front remains random. Its predictor,
obtained by substituting (26) into the 1-D version of (13b), is given by

h
[1]
(x) = h

(0)
(x) + h

(1)
(x) =

(
1 +

σ2
Y

2

)
Q

Kg

(
x

(0)
f − x

)
,(29)

where the bracket superscript [1] indicates an approximation through order 1. The
quality of the hydraulic head prediction can be estimated by, among other means, the
head variance σ2

h(x). Its first-order approximation is obtained by substituting (26)
into (18) and (17) and taking the limit y → x,

K2
g

Q2 l2Y

[
σ2
h(x, t)

](1)
= 2σ2

Y

[
−1 +

x
(0)
f − x

lY
+ exp

(
x− x

(0)
f

lY

)]
.(30)

As expected, σ2
h(xf ;xf ) ≡ 0. Figure 1 shows the dependence of the hydraulic head

variance, normalized by Q2σ2
Y l

2
Y /K

2
g , on dimensionless coordinate x / lY for several

front’s positions relative to the correlation length lY . As the flow domain grows,
so does the head variance. The head variance is directly proportional to squared
dimensionless velocity of the front propagation, Q2/K2

g .

4.1.1. Comparison with the exact analytical solution. We now compare
the general perturbation solutions derived above with the corresponding solutions
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obtained by direct integration of the 1-D flow equation,

∂

∂x

[
K(x)

∂h

∂x

]
= 0, 0 < x < xf (t),(31)

subject to the boundary condition at the inlet, x = 0,

K∂h/∂x = −Q(32)

and to the conditions on the moving front x = xf (t),

h(x, t) = 0, K(x)
∂h

∂x
= −V, V = ne

dxf

dt
.(33)

Then direct integration gives

h(x, t) = Q

∫ xf

x

ds

K(s)
,(34)

from which it follows immediately that V = Q. This corresponds exactly to our
perturbation solution (27). Moreover, since V is deterministic, all its higher moments
and cross-covariances σ2

V (xf ) = CKV (x, xf ) = ChV (x, xf ) ≡ 0, which is in exact
agreement with our perturbative solutions. Also, deterministic V implies deterministic
dynamics of the moving front, xf (t) = (V/ne)t.

It follows from (34) that the residual flux is given exactly by

r ≡ −K ′(x)
dh

dx
= Q

K ′(x)
K(x)

= Q
(
1− eσ

2
Y

)
.(35)

Thus, indeed, (28) is the true first-order perturbation solution.
Taking the ensemble mean of the derivative of (34) shows that the mean gradient

is inversely proportional to the harmonic mean, Kh = Kg exp(−σ2
Y /2), of hydraulic

conductivity,

dh

dx
= − Q

Kh
.(36)

Then mean head distribution conditioned on the position of the moving front, 〈h|xf 〉,
is given by

〈h|xf 〉 = Q

Kh
(xf − x) and h =

Q

Kh
(xf − x).(37)

Since in this case, xf = x
(0)
f (x

(i)
f ≡ 0 for i ≥ 1), (29) is indeed the first-order

approximation of the mean head distribution (37).
It follows from (34) that cross-covariance CKh(y, x) is given as the solution of

dCKh(y, x)

dx
= −QK ′(y)

K(x)
(38)

subject to the boundary condition CKh(y, xf ) = CKh(y, xf ) = 0. For Gaussian K,
this solution is

CKh(y, x) = −Qeσ2
Y

∫ xf

x

[
1− e−σ2

Y ρY (y,z)
]
dz.(39)
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It is easy to verify that CKh(y, x) in (39) corresponds exactly to the first-order per-

turbation solution, C
(1)
Kh(y, x), obtained by substituting (26) into (18). By the same

token, it follows from (34) that head variance, σ2
h, is given exactly by

σ2
h(x) =

Q2

K2
h

∫ xf

x

∫ xf

x

[
eσ

2
Y ρY (z,s) − 1

]
dzds.(40)

The first order in the perturbation expansion of σ2
h is identical to that derived from

(17) and given by (30).
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Fig. 2. Comparison of the exact and perturbation solutions for the normalized head variance
evaluated at the origin x = 0.

Figure 2 compares the first-order perturbation solution for the head variance
(30), normalized by Q2l2Y /K

2
g , with the exact solution (40) for two values of the log-

hydraulic conductivity variance, σ2
Y = 0.1 and 0.5. Both solutions are evaluated at

the inlet x = 0. Not surprisingly, the quality of the perturbation solution deteriorates
as the perturbation parameter σ2

Y increases. Nevertheless, it can be considered satis-
factory even for relatively large values of σ2

Y , especially taking into account that (30)
represents only the leading term in the perturbation expansion of head variance.

The comparison of our perturbation and exact solutions demonstrates that the
perturbation solutions remain asymptotic as long as the Taylor expansions of the
corresponding exponents are asymptotic. In particular, the perturbation solution for
the mean head distribution, h(x), is asymptotic for σ2

Y < 2. At the same time, the
perturbation solutions for the second moments of head, CKh and σ2

h, are asymptotic
for σ2

Y < 1.

4.2. Front propagation by fixed head boundaries. Consider now a front
driven by a hydraulic head gradient. To do so, we prescribe a constant head h = H
at the inlet x = 0, while maintaining h = 0 at the outlet x = L. These boundary
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conditions lead to

G
(0)
K (x, y) = − (x− y)H(x− y) +

L− y

L
x.(41)

4.2.1. Linearized perturbation solution. Substituting (41) into the 1-D ver-
sions of (13a)–(20) leads to the linearized solutions for the zeroth- and first-order
approximations of the mean front dynamics,

x
(0)
f =

√
2HKg

ne

√
t,

(
V

(0)

Kg
=

H

x
(0)
f

)
,(42a)

x
(1)
f = 2σ2

Y lY

[
−1

4

x
(0)
f

lY
+ ln

(
x

(0)
f

lY

)
+

lY

x
(0)
f

− lY

x
(0)
f

e−x
(0)
f /lY + E1

(
x

(0)
f

lY

)
− 1 + γ

]
,

(42b)

where γ is the Euler’s constant and E1(x) is the elliptic integral, and for the first-order
approximation of the front velocity variance,

[
σ2
V

](1)
K2

g

= 2σ2
Y

H2

l2Y

(
lY

x
(0)
f

)4 [
−1 +

x
(0)
f

lY
+ exp

(
−x

(0)
f

lY

)]
.(43)

Other quantities of interest which are necessary for deriving (42)–(43) include the
zeroth-order approximation of the mean hydraulic head, the first-order approximation
of the cross-covariance CKV ,

C
(1)
KV

K2
g

= σ2
Y

H

lY

(
lY

x
(0)
f

)2 [
2− exp

(
− x

lY

)
− exp

(
x− x

(0)
f

lY

)]
,(44)

and the first-order approximation of the residual flux,

r(1)

Kg
= σ2

Y

H

lY

(
lY

x
(0)
f

)2 [
2− x

(0)
f

lY
− exp

(
− x

lY

)
− exp

(
x− x

(0)
f

lY

)]
.(45)

Figure 3 compares zeroth-order, x
(0)
f , and first-order, x

[1]
f = x

(0)
f + x

(1)
f , approxi-

mations of the mean front dynamics for several values of the log-hydraulic conductivity
variance, σ2

Y = 0.1, 0.5, and 1.0. The mean front is normalized by correlation length,
xf/lY , and dimensionless time is defined as td = tHKg/(nel

2
Y ). This comparison sug-

gests that the expansion xf = x
(0)
f +x

(1)
f + · · · is indeed asymptotic. A more rigorous

analysis of the asymptotics of this expansion is conducted in the next section. One
can see that the mean position of the front scales as

√
t.

h
(0)

(x;xf )

H
=

xf − x

xf
,(46)

Figure 4 shows how the velocity variance, normalized by K2
gσ

2
Y , varies with the

dimensionless distance x
(0)
f /lY for several values of the normalized boundary head,
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Fig. 3. Zeroth- and first-order approximations of the mean front dynamics for several values
of the log-hydraulic conductivity variance, σ2Y .
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Fig. 4. Normalized variance of velocity of the front versus normalized position of the front.

H/lY . The velocity variance increases with the mean velocity of the front, which
in turn increases with H. It also decreases as the front “samples” more and more
correlation scales, as expressed by xf/lY .

The limitations of the linearized solution become obvious when one tries to eval-
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uate the front variance, σ2
f . Indeed it follows from (44) that

dC
(1)
Kxf

dx
(0)
f

= σ2
Y Kg

lY

x
(0)
f

[
2− exp

(
− x

lY

)
− exp

(
x− x

(0)
f

lY

)]
,(47)

which is clearly nonintegrable on the interval [0, x
(0)
f ]. Consequently, the first-order

approximation of σ2
f in (20) is not defined. We now proceed with deriving the first-

order solution without linearization.

4.2.2. Perturbation solution without linearization. For the problem under
consideration, substituting (41) into the 1-D version of (7), evaluated at x = xf , yields

0 = −
∫ xf

0

K ′(y)
dh

dy
dy +HK − V xf .(48)

Expanding the integral in Taylor’s series around xf gives

0 = −
∫ xf

0

K ′(y)
dh

dy
dy − x′

fK
′(xf )

dh

dy
(xf ) + · · ·+HK − V xf .(49)

Note that in the linearized solution, the second term in the Taylor expansion is ab-
sent, and xf is replaced with xf . The recursive approximations of the mean front

dynamics, x
(i)
f (i = 1, 2), are obtained be taking the ensemble mean of (49) and re-

taining the terms of ith order in σ2
Y ; the first-order approximations of front variance,

σ2
f , and cross-covariance CKxf

are derived upon multiplying (49) with x′
f and K ′(x),

respectively, taking the mean and retaining the first-order terms. This results in the
zeroth- and first-order approximations of the mean front,

x
(0)
f (t) =

√
2HKg

ne

√
t(50a)

and

x
(1)
f

lY
= −σ2

Y

4

x
(0)
f

lY
+ σ2

Y

lY

x
(0)
f


−1

2
+

2

3

x
(0)
f

lY
−
{

lY

x
(0)
f

}2

+


1 + lY

x
(0)
f

+

{
lY

x
(0)
f

}2

 e−x

(0)
f /lY


 ,(50b)

and the first-order approximation of the front variance,

[
σ2
f

](1)
= 2σ2

Y l
2
Y


−1

2
+

1

3

x
(0)
f

lY
+

{
lY

x
(0)
f

}2

− lY

x
(0)
f

[
1 +

lY

x
(0)
f

]
e−x

(0)
f /lY


 .(51)

Other quantities of interest which are necessary for deriving (50)–(51) include the
zeroth-order approximation of the mean hydraulic head,

h
(0)

(x, t) = −Hx− x
(0)
f

x
(0)
f

,(52)
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the first-order approximation of the cross-covariance CKxf
,

C
(1)
Kxf

(x, t) = Kgσ
2
Y lY

(
2

[
1− x

x
(0)
f

]
−
[
1 +

lY

x
(0)
f

]
e−x/lY +

lY

x
(0)
f

e−(x
(0)
f −x)/lY

)
,

(53)

and the first-order approximation of the residual flux,

r(1)(x, t) = −Kgσ
2
Y

H

x
(0)
f

+
ne

Kg

∂C
(1)
Kxf

(x, t)

∂t
.(54)

These were obtained from Taylor’s expansion of the 1-D version of (7).
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Fig. 5. Comparison of the linearized perturbation solutions (LS) and the perturbation solution
without linearization (PS) for the mean front dynamics.

Figure 5 compares the linearized perturbation solution (42) for the mean front
dynamics (plain lines) with the perturbation solution without linearization (50) (lines

with circles). The mean position of the front, x
[1]
f = x

(0)
f = x

(1)
f , is normalized with

lY , and dimensionless time is defined as td = tHKg/(nel
2
Y ). One can see that for

relatively small variances of log-hydraulic conductivity (σ2
Y = 0.1) the two perturba-

tion solutions are in a good agreement. The errors introduced by the linearization of
our perturbation solution increase with σ2

Y , with the linearized solution consistently
overestimating the true perturbation solution.

4.2.3. Comparison with the exact analytical solution. If constant head is
maintained at the inlet, the pressure head distribution is given by

h(x, t) = H

[
1−

∫ x

0

ds

K(s)

(∫ xf

0

ds

K(s)

)−1
]
.(55)
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Hence

V (t) = ne
dxf

dt
= H

(∫ xf

0

ds

K(s)

)−1

.(56)

The exact solution for the mean dynamics of the front, xf (t), can now be obtained
by taking K(s) ≡ K to be a random constant, which corresponds to a perfectly
correlated medium, i.e., lY → ∞. Indeed,

x2
f = 2

KH

ne
t.(57)

When K(x) ≡ K, the exact solution for the mean dynamics of the front, xf , can be
obtained from (57). The mean position of the front scales as

√
t:

xf =

√
2H

ne
K1/2

√
t = eσ

2
Y /8

√
2HKg

ne

√
t = eσ

2
Y /8x

(0)
f .(58)

The last equality holds if K is Gaussian. The corresponding linearized and nonlinear
perturbation solutions are obtained by taking the limit as lY → ∞ in (42b) and (50b),
respectively. It is easy to verify that the linearized perturbation expansion becomes
(we use the “˜” sign to distinguish between the linearized perturbation solution and
the perturbation solution without localization)

x̃
[1]
f ≡ x

(0)
f + x̃

(1)
f =

(
1 +

σ2
Y

2

)√
2HKg

ne

√
t,(59)

while the perturbation solution without linearization is

x
[1]
f ≡ x

(0)
f + x

(1)
f =

(
1 +

σ2
Y

8

)√
2HKg

ne

√
t.(60)

The perturbation solution without linearization corresponds to the expansion of the
exponent in the exact solution (58). As such, the nonlinearized perturbation solution
remains asymptotic as long as σ2

Y < 8. At the same time, the linearized solution, while
providing the correct expression for the leading term in the expansion, overestimates
the true solution.

It follows from (57) that the exact solution for cross-covariance CKxf
is

CKxf
=

√
2Ht

ne
K3/2

g

(
e9σ

2
Y /8 − e5σ

2
Y /8
)
= Kg

(
e9σ

2
Y /8 − e5σ

2
Y /8
)
x

(0)
f .(61)

The first-order approximation of CKxf
without linearization is obtained by taking the

limit as lY → ∞ in (53):

C
(1)
Kxf

= Kg
σ2
Y

2
x

(0)
f .(62)

This corresponds exactly to the first-order solution obtained by expanding the ex-
ponents in (61). On the other hand, taking the limit as lY → ∞ in the linearized
solution (47) gives

C̃
(1)
Kxf

= Kgσ
2
Y x

(0)
f ,(63)
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which misses the mark by a factor of 1/2.
The exact solution for the front variance follows directly from (57):

σ2
f =

(
eσ

2
Y /2 − eσ

2
Y /4
) 2HKg

ne
t =

(
eσ

2
Y /2 − eσ

2
Y /4
)
x

(0)2

f .(64)

Taking the limit as lY → ∞ in (51) yields the first-order nonlinear approximation of
the front variance

[
σ2
f (t)

](1)
=

σ2
Y

4
x

(0)2

f ,(65)

which coincides with the first-order approximation of the exact solution. The first-
order linearized expression for the front variance follows from (20):

[
σ̃2
f (t)

](1)
= σ2

Y x
(0)2

f .(66)

Once again, the linearized solution overestimates the true solution.

4.2.4. Comparison with the “mean field” solution. A naive approach to
dealing with random environments is to replace a random parameter, such as the
medium hydraulic conductivity K(x), with its averaged counterpart, K. Such an
approximation, often referred to as the mean field solution, is attractive due to its
simplicity but is often in error, since it ignores all cross-product terms.

If K(x) is a log-normal statistically homogeneous field, its ensemble mean, K, is
given by the arithmetic mean, K = Kg exp(σ

2
Y /2). Replacing random K with K in

(55)–(57) leads to

x̂f = eσ
2/4

√
2KgH

ne

√
t,(67)

where the “ˆ” sign denotes the mean field solution. Comparison with (59) and (60)
reveals that

x
[1]
f (t) ≤ x̂

[1]
f (t) ≤ x̃

[1]
f (t).(68)

Thus, despite its simplicity, the mean field solution x̂f (t) provides a tighter bound
for the mean dynamics of the front xf (t) than does the linearized solution x̃f (t). Not
surprisingly, the mean field solution x̂f (t) overestimates the true mean solution xf (t).

5. Summary. We have described flow in a random porous medium through
domains that are saturated by a fluid but are at least partially bounded by a free
surface. The randomness in our model arises from uncertainty about details of the
medium’s hydraulic conductivity, which we treat as a random field. It would be
straightforward to include random fixed boundary and initial conditions, although we
do not consider those additional complications here. Random conductivity renders
the hydraulic pressure head, the fluid flux, and the position of the free surface random
too.

Our initial result is an integral equation for the pressure head from which we can
derive the mean fluid flux and thus the mean position of the free surface boundary.
Unlike solutions for flow in random media with fixed boundaries, however, the domains
of integration depend on the random position of the free boundary. Hence, we have
expanded the random integrals in Taylor’s series about the mean position of the free
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boundary. In principle, we could obtain mean head, as well as other quantities of
interest, to any desired accuracy by taking the ensemble average of the Taylor series
to high enough order. However, a low-order expansion is desirable because higher-
order terms in the Taylor series are quite complex.

We have obtained a linearized equation (LE) for mean head by averaging the
zeroth-order term in the Taylor series for each integral. From this we have determined
a linearized mean flux approximation and thus predict the (linearized) mean location
of the free surface. To quantify the uncertainty associated with such predictions,
we have also developed a set of LEs satisfied by the corresponding second moments.
The LEs are themselves fairly complicated and require closure approximations to be
workable. We have based our closures on perturbation expansions in powers of σ2

Y ,
the variance of the logarithm of hydraulic conductivity. The perturbation analysis
leads to recursive equations that can be solved analytically, as we have been able to
do here, or by standard numerical methods in other cases.

All of this begs the question, How good are the linearized approximations? We
answer this question in 1-D media confined to the interval [0, L]. We have analyzed
two cases: fronts that are driven either by deterministic constant boundary fluxes at
x = 0 or by deterministically prescribed constant boundary head, also at x = 0. We
suppose head is zero at x = L and conductivity is a random field in the first example
and a constant but random variable in the second. In these cases we can obtain exact
solutions to the free surface problem and compare them to the LE approximations.
For the prescribed flux boundary, the first-order perturbation expansions of the LE
are correct to order 1. However, in the other case when head is fixed at x = 0, the
first-order LE overestimates the position of the front and of the covariance between
the front and (random, but constant) conductivity. Finally, a mean field solution for
the averaged front dynamics overestimates the expected position of the front, but it
provides a tighter bound than the linearized estimate.

Appendix. Perturbation expansions. To render (11) workable, we employ a
perturbation analysis in small parameter σY representing a measure of the standard
deviation of Y ′(x) = Y (x) − Y (x), where Y (x) = lnK(x). In doing so, the state
variables A are formally expanded in the asymptotic series, A = A(0) +A(1) + · · ·+
A(2[n−1]) +O

(
σ2n
Y

)
, and the following identities are used:

K = eY = KgeY
′ = Kg

[
1 +

σ2
Y

2
+O

(
Y ′3
)]

,(69)

K ′ = K −K = Kg

[
eY

′ − eY ′
]

= Kg

[
Y ′ +

Y ′2

2
− σ2

Y

2
+O

(
Y ′3
)]

,(70)

where Kg = exp
(
Y
)
is the geometric mean of K, and σ2

Y = Y ′Y ′ is the variance of
Y .
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